Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Colloid Interface Sci ; 327: 103160, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38663154

RESUMO

Cancer, a widespread and lethal disease, necessitates precise therapeutic interventions to mitigate its devastating impact. While conventional chemotherapy remains a cornerstone of cancer treatment, its lack of specificity towards cancer cells results in collateral damage to healthy tissues, leading to adverse effects. Thus, the quest for targeted strategies has emerged as a critical focus in cancer research. This review explores the development of innovative targeting methods utilizing novel drug delivery systems tailored to recognize and effectively engage cancer cells. Cancer cells exhibit morphological and metabolic traits, including irregular morphology, unchecked proliferation, metabolic shifts, genetic instability, and a higher negative charge, which serve as effective targeting cues. Central to these strategies is the exploitation of the unique negative charge characteristic of cancer cells, attributed to alterations in phospholipid composition and the Warburg effect. Leveraging this distinct feature, researchers have devised cationic carrier systems capable of enhancing the specificity of therapeutic agents towards cancer cells. The review delineates the underlying causes of the negative charge in cancer cells and elucidates various targeting approaches employing cationic compounds for drug delivery systems. Furthermore, it delves into the methods employed for the preparation of these systems. Beyond cancer treatment, the review also underscores the multifaceted applications of cationic carrier systems, encompassing protein and peptide delivery, imaging, photodynamic therapy, gene delivery, and antimicrobial applications. This comprehensive exploration underscores the potential of cationic carrier systems as versatile tools in the fight against cancer and beyond.

2.
Curr Med Chem ; 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38362688

RESUMO

This review article discusses the challenges of delivering cargoes to the cytoplasm, for example, proteins, peptides, and nucleic acids, and the mechanisms involved in endosomal escape. Endocytosis, endosomal maturation, and exocytosis pose significant barriers to effective cytoplasmic delivery. The article explores various endosomal escape mechanisms, such as the proton sponge effect, osmotic lysis, membrane fusion, pore formation, membrane destabilization/ disruption, and vesicle budding and collapse. Additionally, it discusses the role of lysosomes, glycocalyx, and molecular crowding in the cytoplasmic delivery process. Despite the recent advances in nonviral delivery systems, there is still a need to improve cytoplasmic delivery. Strategies such as fusogenic peptides, endosomolytic polymers, and cell-penetrating peptides have shown promise in improving endosomal escape and cytoplasmic delivery. More research is needed to refine these strategies and make them safer and more effective. In conclusion, the article highlights the challenges associated with cytoplasmic delivery and the importance of understanding the mechanisms involved in endosomal escape. A better understanding of these processes could result in the creation of greater effectiveness and safe delivery systems for various cargoes, including proteins, peptides, and nucleic acids.

3.
Artigo em Inglês | MEDLINE | ID: mdl-38013441

RESUMO

The second most common type of cancer is lung cancer, impacting the human population. Lung cancer is treated with a number of surgical and non-surgical therapies, including radiation, chemotherapy, and photodynamic treatment. However, the bulk of these procedures are costly, difficult, and hostile to patients. Chemotherapy is distinguished by inadequate tumour targeting, low drug solubility, and insufficient drug transport to the tumour site. In order to deal with the issues related to chemotherapy, extensive efforts are underway to develop and investigate various types of nanoparticles, both organic and inorganic, for the treatment of lung cancer. The subject of this review is the advancements in research pertaining to active targeted lung cancer nano-drug delivery systems treatment, with a specific emphasis on receptors or targets. The findings of this study are expected to assist biomedical researchers in utilizing nanoparticles [NPs] as innovative tools for lung cancer treatment, offering new methods for delivering drugs and reliable solid ligands.

4.
Mini Rev Med Chem ; 2023 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-37711105

RESUMO

Rheumatoid arthritis (RA) is a chronic autoimmune disease that has traditionally been treated using a variety of pharmacological compounds. However, the effectiveness of these treatments is often limited due to challenges associated with their administration. Oral and parenteral routes of drug delivery are often restricted due to issues such as low bioavailability, rapid metabolism, poor absorption, first-pass effect, and severe side effects. In recent years, nanocarrier-based delivery methods have emerged as a promising alternative for overcoming these challenges. Nanocarriers, including nanoparticles, dendrimers, micelles, nanoemulsions, and stimuli-sensitive carriers, possess unique properties that enable efficient drug delivery and targeted therapy. Using nanocarriers makes it possible to circumvent traditional administration routes' limitations. One of the key advantages of nanocarrier-based delivery is the ability to overcome resistance or intolerance to traditional antirheumatic therapies. Moreover, nanocarriers offer improved drug stability, controlled release kinetics, and enhanced solubility, optimizing the therapeutic effect. They can also protect the encapsulated drug, prolonging its circulation time and facilitating sustained release at the target site. This targeted delivery approach ensures a higher concentration of the therapeutic agent at the site of inflammation, leading to improved therapeutic outcomes. This article explores potential developments in nanotherapeutic regimens for RA while providing a comprehensive summary of current approaches based on novel drug delivery systems. In conclusion, nanocarrier-based drug delivery systems have emerged as a promising solution for improving the treatment of rheumatoid arthritis. Further advancements in nanotechnology hold promise for enhancing the efficacy and safety of RA therapies, offering new hope for patients suffering from this debilitating disease.

5.
Phytomedicine ; 99: 154008, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35263673

RESUMO

BACKGROUND: Tridax procumbens is a traditionally used medicinal plant with high content of active phytoconstituents having anti-inflammatory activity. Accumulating evidences have shown that Tridax procumbens efficaciously diminished oxidative stress and inflammation. However the anti-inflammatory role of Tridax procumbens is not obscured in allergic asthma. PURPOSE: Aim of this study was to decipher the anti-inflammatory role of Tridax procumbens in allergic asthma and its underlying mechanism. METHODS: Ethanolic extract of Tridax procumbens (TP) was prepared and major phytoconstituents (flavonoids) were characterized by biochemical and UPLC/MS analysis. Rats were sensitized and challenged with environmental allergen ovalbumin (OVA) and lipopolysaccharide (LPS) to establish an allergic asthma model. Persuasive anti-inflammatory role of TP was demonstrated in vivo (100, 200 and 400 mg/kg) and in vitro (250, 125, 75 and 25 µg/ml) experiments. RESULTS: Characterization by UPLC/MS analysis showed the presence of various bioactive flavonoids. In in vitro study, significant reduction in ROS production, apoptosis and mitochondrial dysfunction were observed in alveolar type II cells upon pre-treatment with TP (250, 125, 75 and 25 µg/ml) in a concentration-dependant manner. In vivo, TP (200 mg/kg) oral administration showed robust anti-oxidative activity. TP treatment abrogated bronchial wall thickening, immune cell infiltration and bronchial wall fibre deposition. Immunohistochemical analysis showed the diminished expression of IL-1ß, IL-6 in bronchial epithelium and vascular endothelium. TP abrogated inflammation by reducing the level of inflammatory cytokines including IL-2, IFN-γ, IL-6 and MCP-1, as well as inflammatory markers including TWEAK, TNF-α, TNF-R1 and its downstream transcription factor NF-Ò¡B/p65 activation and its nuclear translocation. Western blot analysis of TP treated lung tissue and alveolar type II cells showed reduced phosphorylation of ERK1/2 significantly. CONCLUSION: TP exhibited anti-inflammatory activity by inhibition of ROS production and down-regulation of NF-Ò¡B/ERK signalling in vitro and in vivo asthma model. Thus, TP can be envisaged as an effective anti-inflammatory agent for OVA-induced allergic asthma.

6.
Crit Rev Ther Drug Carrier Syst ; 38(3): 75-115, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34348019

RESUMO

The outbreak of novel coronavirus (nCoV) or severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) in December 2019 in Wuhan, China, has posed an international public health emergency worldwide and forced people to be confined in their homes. This virus is of high-risk category and is declared a pandemic by the World Health Organization (WHO). The worldwide researchers and various health professionals are working together to determine the best way to stop its spread or halt this virus's spread and circumvent this pandemic condition threatening millions of human lives. The absence of definitive treatment is possible to explore to reduce virus infection and enhance patient recovery. Along with off-label medicines, plasma therapy, vaccines, the researchers exploit the various plants/herbs and their constituents to effectively treat nCoV infection. The present study aimed to present brief and most informative salient features of the numerous facts regarding the SARS-CoV-2, including the structure, genomic sequence, recent mutation, targeting possibility, and various hurdles in research progress, and off-labeled drugs, convalescent plasma therapy, vaccine and plants/herbs for the treatment of coronavirus disease-2019 (COVID-19). Results showed that off-labeled drugs such as hydroxychloroquine, dexamethasone, tocilizumab, antiviral drug (remdesivir, favipiravir), etc., give positive results and approved for use or approved for restricted use in some countries like India. Future research should focus on these possibilities that may allow the development of an effective treatment for COVID-19.


Assuntos
Antivirais/farmacologia , Tratamento Farmacológico da COVID-19 , Vacinas contra COVID-19/administração & dosagem , Extratos Vegetais/farmacologia , SARS-CoV-2/efeitos dos fármacos , Enzima de Conversão de Angiotensina 2/antagonistas & inibidores , Enzima de Conversão de Angiotensina 2/metabolismo , Antivirais/uso terapêutico , COVID-19/epidemiologia , COVID-19/imunologia , COVID-19/virologia , Ensaios Clínicos como Assunto , Quimioterapia Combinada/métodos , Humanos , Terapia de Alvo Molecular/métodos , Mutação , Uso Off-Label , Pandemias/prevenção & controle , Extratos Vegetais/uso terapêutico , SARS-CoV-2/genética , SARS-CoV-2/imunologia , SARS-CoV-2/metabolismo , Resultado do Tratamento , Proteínas Estruturais Virais/antagonistas & inibidores , Proteínas Estruturais Virais/genética , Proteínas Estruturais Virais/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...